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Thermodynamic approach to creep and plasticity
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A solid subjected to a small load distorts rapidly in the manner predicted by elasticity theory. On a much
longer time scale, the solid will creep. This dissipative motion is an important consideration in the engineering
design of, for example, aircraft engines, but the macroscopic equations of motion describing this deformation
are based on empirical observations. The principles of thermodynamics specify the dissipative fluxes appro-
priate to the classical equations of elasticity, which include one, unique to solids, which describes creep. The
thermodynamic theory is presented, and the insights into the underlying microscopic mechanisms of creep,
gleaned from the macroscopic formalism, are also discu$Sd963-651X97)10506-3

PACS numbd(s): 05.90+m, 03.40.Dz, 81.40.Lm

How do solids differ from liquids? Distinguishing charac- tion of tertiary creep. During this final creep stage disloca-
teristics of solids include the ability to support shear forcesfions accumulate, cracks form and fracture brittle materials,
the appearance of long-range spatial and temporal order, avgids coalesce, and necking ensues in_ductile ones. The three
creep, the slow dissipative deformation of a solid under &tages of creep are often summarized in a law of the {&jm
small load[1-3]. Creep occurs in solids in addition to a _ N, .Ct
much more rapid elastic response to a load. If the load is de=Aln t+Bt'+e™, @)

subsequently removed only the elastic portion of the straifyhere se is the creep strain of the solid. The freedom to
relaxes. Creep thus represents an irreversible contribution {g,,5se the three coefficients and the exponent empirically
the equations of motion of a solid, not described by elast|C|ty",np"es rather a good fit to any experimental circumstance.

theory. . . The empirical data on creep are most usefully summa-
Andrade[4] attributed creep to “rearrangement or rota- rized in deformation-mechanism maps2], where creep

tion of small parts of a crystalline nature,” i.e., dislocation echanisms and their corresponding strain rates are plotted
motion, and differentiated creep mechanisms by their charyq ¢nctions of temperature and applied st(@s. 2). Such

acteristic strain rate. In Fig. 1 i_s shovv_n the Iength of a barmaps prove useful in the engineering design of, e.g., reactor
under constant load as a function of tifi§. Following an components and aircraft engines, where creep must be re-

immediate elastic strain, the bar grows at a decreasing ragced to strict tolerances. Parameters such as chemical com-
during primary creep. At sufficiently low temperatures suchygition and crystalline size can be adjusted to alter the to-

creep behavior, also termed “logarithmic” creep, extendspqgranhy of the maps and identify the materials which
indefinitely in time; the later stages of creep are suppressedyisty the tolerance limits. Thermodynamic formalisms,
Primary creep is typically attributed to thermally activated

dislocation motior{6,7]. Dislocations move as thermal fluc-
tuations excite them over their activation barriers. Those dis
locations with the smallest activation energy leave the sys .
tem first, and the remaining dislocations are ever more tertiary
energetically unfavorable to budge. The exhaustion of the /
active dislocation density leads to a decreasing strain rate.

During secondary, or steady-state, creep, dislocatiol
mills, such as Frank-Read sources, are formed and produr
new dislocations. Through variously described scenarios, th
production, annihilation, and interference of dislocations
yield a constant strain rate. These models include Nabarrc
Herring creed 8,9] where vacancies diffuse through crystals
in response to concentration gradients, and Orowan’s ba
ance of the rate of work hardening with the rate of diffusion-
controlled recovery10]. This is also the regime of “power-
law” creep, where the strain rate is proportional to some
power n (>1) of the applied stress. Such a power law is t
achieved in Weertman'’s creep mod&l], where dislocation

mills operate on many parallel slip planes, and the resultant fiG. 1. The creep strain of a rod under constant load as a func-
dislocations interact and annihilate through dislocationtion of time. The behavior is typically divided into primary creep,
climb. characterized by a decreasing strain rate, secondary creep with a

As the dislocation density increases, the bar can eventwonstant strain rate, and tertiary creep, with an increasing strain
ally fail under the constant load, which marks the culmina-rate, culminating in failure.

de secondary
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which he could deduce the leading-order dissipative terms

o appropriate to a hydrodynamic theory. Applying this proce-
elastic limit L . T .. . .
B dure, which entails restricting the dissipative terms to satisfy
————plasticity energy conservation and entropy production, to an Eulerian
fluid, yields the familiar Navier-Stokes equations character-
ized by shear and bulk viscosities and thermal conductivity.
Eckart applied the same formalism to the equations of elas-
ticity, and found in addition to viscosity and thermal conduc-
tivity a leading-order dissipative term unique to solids, which
describes plastic deformation.

The classical equations of elasticity may be written as
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FIG. 2. A typical deformation-mechanism map, where strain dpv i _
rates and the deformation mechanisms are plotted as functions of ot + or (Pdij+ 7+ priv;) =0, )

temperaturgnormalized to the melting pointand applied stress
(normalized to the shear modujuBy changing the chemical com- conservation of entropy,
position of a material the topography of the map can be altered and

plastic deformation reduced to within tolerance limits. aps - .
T‘FV'[)SV:O, (4)
such as those of Rice and Asaro and Rit8], yield consti-

tutive equations which successfully describe the macroscopignd what mav be termed conservation of the lattice
deformations which result from specific microstructural rear- Y '

rangements, such as metallic slip and shear strain localiza- JR

tion. Such formalisms remain empirically based, however, in —+ (5 §)|§:O’ (5)
the sense that the microscopic deformation mechanism ot

which dominates the macroscopic motion must be known in ) ] ] ] ]
order that the correct constitutive law be used. Here p(F,t) is the density»(F't) is the velocity,P(Ft) is

Despite the success of such empirical approaches, a thefle hydrostatic pressure;;(F.t) is the shear stress tensor,
retical model for creep, at the level of the equations of elass(f",t) is the entropy per gram, arR(r,t) is the position at
ticity, remains elusive. Thermal activation models musttime O of a particle which at time is atr. The first and
grapple with the contradiction of creep at liquid helium tem-second laws of thermodynamics are expressed in the form
peratures, where the creep curves of cadmium at 4.2 and 1.2
K differ by only 10% in their strain ratefsl4]. Extrapolation
of the creep data from the experimental torsion, tension, and
bending tests to the design of real machine components is
involved; already the generalization to multiaxial stress reliesvheree is the internal energy of the solid per gramis the
on simplifying assumptions about the geometry of the yieldtemperature, anth; is the strain tensor at constant density.
surface[15]. Quantitative reproducibility of creep measure- At linear order in the strains,
ments is hampered by the sensitivity of creep rates to small
irregularities in the experimental apparatus. For example, 1Ry IRy 2
generalizations about the behavior of particular solids under mij=3 a_rj ar; 3
simple tension must correct for variations in crystalline axis
alignment, the presence of thermal gradients, and the precid¢sing Eq.(6), and Eqs(2)—(5), conservation of energy de-

1

de=Tdst+Pd p +

Je
m) dm, (6)

5ij(€'§))- (7)

boundary conditions imposed by the Iogl. termines the first-order expressions for
The most pressing question posed by creep concerns the R
status of elasticity theory. Given that creep phenomena are P=kV-(R-T) €]

long-time, long-wavelength effects, is there no macroscopic

theory, at the level of hydrodynamics, which presents a uniand

fied picture of the behavior of solids? If not, it is intrinsically

puzzling that decidedly macroscopic motion, such as the _ [9Ry IRy 2 Y8

bending of a marble mantelpiece under its own we[di, T M &_rj+ ar; 3 2(V-R), ©
resists description within a thermodynamic framework. Since

hydrodynamics cannot be derived from microscopic firstwhere « is the bulk modulus, angk is the shear modulus.
principles, such a conclusion would imply that the macro-The presence of the shear stress tensor and the need for Eq.
scopic motion of solids lacks any theoretical understanding(5) to close the set of equations is what distinguishes these

Eckart[17,18 developed a formal procedure by means ofequations from the Euler equations of fluid mechanics.
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To introduce dissipation into these equations Eckiff = whose behavioral consequences have been explored in detail
imposed the condition of entropy production while maintain-elsewhereg[15] will be neglected. Equation&l2) and (13)
ing the conservation of ener§$9,20. The dissipative fluxes describe the lowest-order dissipative correction to a robust
include the effects of thermal conductivity and bulk andelastic solid state, namely, one which supports a uniform
shear viscosity, which shall henceforth be neglected. Anyshear stres21]. The response in E413) bears similarity to
modification of Eqs(2)—(5) must also be consistent with the the phenomenological predictions of strain-gradient plastic-
conservation laws, Galilean covariance, and symmetry prinity [22]. There, gradient effects are considered as an addi-
ciples. To leading order, Eckart replaced E@s.and(5) by  tional contribution to the equations of plastic flow. Here,
qualitatively different material behavior is predicted in the

dps - . ( ”)2 regime where viscoelastic creep is suppressed, and inelastic
—+V.psv= (10 . . - .
at TE response to shear stress gradients is the dominant mechanism
of plastic flow.
and Requiring that the entropy production be positive means
that in Eq.(12) the diffusion coefficiend=0; since a perfect
i ‘9_Ri . oo |- i lattice does not creep, we specible p,, , the local density of
+(r- V)R, , (11 . ) ! : , e
arj\ at dislocations in the solid. The presence of a higher derivative

) o ) in Eq. (13) requires the application of another boundary con-
wherere is a characteristic time for the elastic shear stress t@jition. We can solve for the velocity in EGL3) to give

relax. Eckart expressed E(L1) in terms of the metriq;;

=(dR1dr;)(dR,/ar;) of the initial (relaxed state. He inter- Imif) R

preted the irreversible contribution to the metric as replacing Vi _( T W] (I ik, (14
the elastic constraint of “relaxability-in-the-large,” where J

all strains are relaxed by removing external loads, by the hare
plastic ‘“relaxability-in-the-small,” where internal elastic
strains may be relaxed only by cutting the material. The lat- JR.R.R
ter principle, Eckart showed, was sufficient to maintain a J= ( e Z),
Riemannian geometry of strain.

The form of Eq.(11) closely resembles the constitutive : . . .

: I ; - . the Jacobian matrix. To lowest order in the strains we can
equations describing viscoelasticity, which are frequently AP arite Eq.(14) as
plied to describe slip of metallic crystals. Note, however, that '
Eckart's term does not allow for a characteristic “yield
stress” to which the shear stress relaxes. Rather (E%). vi= )
indicates that the equations of elasticity are mathematically at ar;
unstable, since the leading-order dissipation renders the solid ) !
unable to support a shear. In a real physical system, the chalf order that the surface of 'the solid be well defined, we take
acteristic time constants would differ on the various slip2S the new boundary condition
planes of an anisotropic crystal, and these time constants
may be sufficiently long that relaxation effects can be ig- Vsl:_(&) :/, (17)
nored on the laboratory time scale.

The form of Eqgs.(10) and (11) is not unique. An addi-
tional dissipative term which satisfies the constraints of enwhere vg, is the perpendicular component of the surface
ergy conservation and entropy production would transformvelocity and/” is the dimension of the solid which is creep-

aryryr, (15

&Ri &Tij
——+d

surface

Egs.(4) and(5) to yield ing. By continuity, Eq.(2),
ps - (Tt |2 -
%*V‘ps,jzd( (a”r.lk)) ’ 12 vs, =v, (surface, (18)
] the perpendicular component of the bulk velocity evaluated
IR; - (7l ik) at the surface. Combining Eqel7) and (18) yields
—+(»-V)R=d———, (13
at ar
(97'“
, d( ) =0. (19
where rij:(ari/(?Rj)Rk#jy and Eckart's terms have been I | urface

suppressed. Equation$2) and (13) describe a “diffusion”

of the original lattice, which is equivalent to a plastic defor- The creep term is required to vanish at the surface. One way

mation. The elastic strains are measured relative to the refo satisfy such a boundary condition is to tadke-0 at the

erence lattic&. If one applies a load to a solid, according to surface, which implies that the dislocations are annihilated as

Eq. (13), this reference lattice will on long-time scales dif- they hit the surface.

fuse in such a way as to reduce strain gradients_ Upon re- The formal solution to elasticity with creep is obtained by

moval of the load, the solid will relax the elastic part of the putting Eq.(14) into Egs.(2)—(4) to obtain a closed theory

strains, to the new position of the reference lattice. for R, p, ands. Consider, for example, a standing bar acted
In what follows, | shall investigate the material behavior on by gravity(Fig. 3). The equations of linear elasticity are

implied by Eqs.(12) and(13). The viscoelastic contribution, solved subject to the force of gravity
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@, a local(average Burgers vector, the equations of elastic-
ity are revised as followg24]. Momentum conservatio(B)

4 acquires an additional stress contribution
dpvj J
T'ﬁ‘a—rj(P(Sij+Tij+p1/i1/j+)\(1)iwj):0, (25)
g I where\ is a mutual interaction energy of dislocations which
enters the first law6) as

(%) =)\wi . (26)

U L

The lattice equation becomes

FIG. 3. A bar standing on a surface. It will creep due to the
strain gradient imposed by gravity. IR . IT R
a—t'+(ﬁ~V)Ri:d aT”_ {&X(VXN@)}, (27

i

I(P S+ 73) — pg? 20
ar; P and the equation of motion for the Burgers vector is
and the boundary condition of vanishing shear and normal 58
forces on the other faces yiel{ia3] ow s S STYX G
pr VX{(v+ 67)X o}, (28
o g
5RX=—%9(I—Z)X, 5Ry=—%g(l—z)y, where
(21)
S - a7
5vi=a{a)><(V><)\w)}i+y?. (29
]

oR,= D {12 (1~ 22~ o (xP+y?),

_ ) _ ) The dissipative terms in Eq$28) and (29) are again speci-
where 6R;=R;—r;, o is Poisson’s ratio,E is Young's  fieq by requiring energy conservation and entropy produc-
modulus, andl is the length of the bar. Neglecting any tjon. Onsager reciprocity establishes the equivalence of the
changes in the radial dimension of the bar, the creep equatiops and entropy production being positive also requires that

y?*<ad. Sinced=p, in the limit of dilute dislocation den-

IR, 7y, sity, we takeyxp, to satisfy the inequality. In the same
V== WJF 9z (22) dilute limit we shall neglect terms involving mutual interac-
tions of the Burgers vectors, and take the limiting form of
with Egs.(17) and(18) and evaluated at=1 yields Eqg. (29 where the dislocation density is convected along at
the creep velocity:
= P9 g 29 11y, 29 e - P
E 3 E — =VX(89X®), Ovi=y—2. (30)
at ar;
The lowest-order solution
Consider now the standing bar acted on by gravity, taking
pgl 4 dupg into account the time dependence of the dislocation density.
(lg— )| 1+ _°> ~ ZRPE (1+ o)t (24) In the dilute limit, the dislocations do not interact, and if one
2E 3 E assumes a slowly spatially varying distribution of disloca-

tions in the bulk,p,*|®|, and® can be replaced bjw| in

gives that the length of the bar decreases linearly in timeEq. (30). Assuming that the depletion of dislocations from
This constant creep rate, a characteristic of secondary creefva bulk equals the net flux @ through the surface
is perhaps not surprising since we have assumedithand ’

therefore the density of dislocations in the bar, is constant. .
Since at the boundaries the dislocations are steadily being J dv( (9|_w)
annihilated, this constancy implies an equal rate of produc-
tion of dislocations in the bulk of the bar.

The complementary scenario, viz., where the dislocationwhereA is the cross-sectional area of the bar, ahds its
or more generally, defect density is not replenished, requiregolume. Using this time dependence of the diffusion coeffi-
additional information about the dynamics of the dislocationcientd in Eq. (23), and solving for the length of the bar, the
loops. Including the dependence on the additional variabléexhaustion creep” behavior is described by

4
=—7§Mp9|c5|(1+0)A, (3D
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4 upg

3E

Y B . C’' 4D’
(1+0’)m|0t , P+Trr:A+r—2_COS$ 2A +r—4+—rz— ,

(32

lo—I ||*|(d)|
— = w —1in
0 0 O,y

B !
wherea, is the initial value of the local Burgers vector. This Ptrop=A— 7+ 00529( 2A" +12B'r%+ r_“) , (39
result is in agreement with the logarithmic creep of the em-
pirical relations. To describe the crossover regime from pri- ) /
) 6C’ 2D
mary to secondary creep the full dependence of creep on the T g=Sin26| 2A’ +6B'r?— —(— —|,
mutual interaction of dislocations, including the possibility r r

of dislocation production such as a Frank-Read SOUICShhere the coefficients are specified by the boundary condi-

would have to be taken into account, tions. Using these solutions in E(.6) gives for the lowest-
The richness of creep behavior is illustrated by the com- ) 9 9

plexity of the two-dimensional deformation-mechanismOrder’ angle-dependent creep rates

maps[12] (Fig. 2). While various microscopic models may ud 16D’ (—1-20)
describe individual mechanisms at least qualitatively, transi- v, = — = cosm{ 16B'r(—20—1)+ T]
tions between mechanisms are typically only empirically ob- r

served. For example, the behavior of a sapphire fiber under a (39
tensile load is a very strong function of its temperafg]. wd 16D’ (1+20)
At lower temperatures, hardly any creep strain is discernible v,=— = sin20( 16B'r(20+1)+ — 33
before fracture. Experiments and theories have identified

spherical voids which form during the fabrication of sapphire |t the dislocations in the bulk are annihilated as they hit

fibers as the likely culprits in the fracture. At lower tempera-ihe syrface, then we use the solution to linear elasticity, Eq.
tures these voids are unstable to surface diffusion, where thes) satisfying the boundary conditions

surface atoms migrate from regions of high curvature to-
wards those of lower curvature, and deform into ellipsoids, (P+7,),=0=0 (36)
with their major axis perpendicular to the tension. However,
along with the increasing sharpness of the ellipse profileand
comes increased stress concentration at the tips. This ellip-
soidal shape is susceptible to fracture in accordance with the Tro(r=a)=0, (37
Griffith criterion [26)]. _ ) ) _ )

At higher temperatures, sapphire fibers can maintain creeWherea is the radius of the circular hole. This solution
strains of up to 10%. In this region of parameter space, sur- S S S

face diffusion is no longer a dominant deformation mecha- A= — -~ aA=—Z B'=0

nism. Instead empirical creep equations predict that the 2’ 2 4’ ’ (38)
spherical voids distort into ellipsoids elongated in the direc-

tion parallel to the tension. These are shapes of diminishing Cr—_ ﬁ D= ﬁ

stress intensities, and they are stable against crack formation. T4 )

Despite its dramatic consequences, the behavioral transition

in sapphire as a function of temperature is unexplained. is then used in Eq35) to solve for the creep behavior. This
Clearly a macroscopic theory cannot reveal an underlyings illustrated in Fig. 4b), and the creep is seen to elongate

microscopic mechanism for creep. However, the macrothe circle in the stable direction.

scopic behavior which follows must be describable by the If the dislocations build up at the surface, we can calcu-

thermodynamic formalism; in this case, the two behaviordate the effect of the creep term when the dislocation density

are obtained by solving the dissipative elastic equations sutat the surface has reached a steady-state value. In this case,

ject to two different boundary conditions. As of yet we havethe equations of linear elasticity should be solved subject to

satisfied the boundary condition on the creep tét® by  the boundary conditions

takingd—0 at the surface. However, if the dislocations do

not annihilate as they hit the surface, the diffusion constant Iy -0 (39)
does not vanish. In addition, the presence of dislocations /s
implies a stress discontinuity at the boundary. Conditi®)
can still be satisfied, however, by taking and
J7j r=a)=0, 40
J'7 surtace whose solution is
as the boundary condition subject to which the elastic equa-
i S S& S
tions should be solved. A=—-, B=——, A'=—-—, B’'=0,
Consider a circular hole in a two-dimensional plate, with 2 2 4 (41)
a tensile forces acting on it at infinity. The general solution o
to the elastic equations in th{dipolar) geometry is given by C'=— S =0

[27] =T 17
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@ b. temperatures the dislocations can get through, while at low
temperatures they build up at the surface. Thus the nature of
the macroscopic theory may give insight into the workings
on a microscopic scale.

The theory considered herein is clearly in a rudimentary
form. To connect to current empirical creep equations the
full dependence of the elastic constants on the crystalline

f \ geometry should be taken into acco(ip8]. Rather than as-

- suming the “amorphous” elasticity expressed by one bulk

Q k J and one shear modulus, one could systematically incorporate
[ the preferred slip planes and reproduce the sensitivity of

creep to alignment. Given the high-temperature apparatus
used in most creep tests, the full set of thermodynamic dis-
sipative fluxes, notably thermal conductivity and viscoelastic
relaxation, Eq(13), ought to be included in the analysis of a
laboratory experiment. Finally, rather than taking steady-
state solutions to the weakly dissipative equations, the dy-
namics of dislocations as given by Ed25)—(29) contains
both transient behavior and nonlinear interactions. The full

tions might allow for a thermodynami ription of
FIG. 4. The distortion of spherical voids in sapphire fibers underequa ons might allow for a thermodynamic description o

) : . o . plasticity [29] and lend some insight into the accompanying
tension.(a) The solution to the creep equatiéd3) if dislocations %ffects of hysteresis and acoustic emis<iaa).

pile up at the surface. Both radial and angular creep are suppresse 'The analysis in this paper is motivated by the presently

and the material is susceptible to other means of fracture. Suc trati tate of fract h The classi Kd .
behavior is observed at lower temperatuies.The solution to Eq. rustrating state ot fracture theory. The classic crack descrip-

(33) if dislocations annihilate at the surface. The sphere elongates ifjon due to Inglis solves the elastic equations around an el-

the direction of the tension, and the stresses are diminished. sudiptical hole in a stressed pla{&1]. The limit of an infini-
(stablg strain is observed at higher temperatures. tesimally wide ellipse, which is the basis of current

descriptions of fracture, is riddled with singularities and re-

, , ultant dynamic instabilitie$32]. Inclusion of an inelastic
Again, the resultant creep of the circular shape can be foung.” = . . ! .
issipation might allow for a self-consistent calculation of a

by using Eq[(41) in the creep equation@5) and is found to dynamic crack profile. The competing time scales governing

vanish identically. The circular shape in this instance resists;_ . . S
o L . elastic crack propagation and the dissipative forces would
elongation in the direction of the external tension and the . . . .
. - e . determine whether the dynamic solution results in fracture or
accompanying diminution of the geometrical stress concen-

tration. Thus, with this boundary condition, the elastic solu—pIaStIC deformation. Perhaps through such an analysis one

tion is instead susceptible to other deformation mechanismsCOUId even define the engineering concepts of “brittleness

such as surface diffusion, which work to distort the “hard- and “ductility” more rigorously, as thermodynamic equa-

ened” surface into the unstable cracklike shape. The macrot—'ons of state.

scopic theory thus indicates that the transition in deformation | am grateful for the comments and criticisms of J.
mechanism as a function of temperature is related to theanger, G. Mazenko, S. Putterman, and Z. Suo. This work
ability of dislocations to pass through the surface; at highwas supported by the ITP’'s NSF Grant No. 94-07194.
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