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Thermodynamic approach to creep and plasticity

Ritva Löfstedt
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

~Received 26 November 1996!

A solid subjected to a small load distorts rapidly in the manner predicted by elasticity theory. On a much
longer time scale, the solid will creep. This dissipative motion is an important consideration in the engineering
design of, for example, aircraft engines, but the macroscopic equations of motion describing this deformation
are based on empirical observations. The principles of thermodynamics specify the dissipative fluxes appro-
priate to the classical equations of elasticity, which include one, unique to solids, which describes creep. The
thermodynamic theory is presented, and the insights into the underlying microscopic mechanisms of creep,
gleaned from the macroscopic formalism, are also discussed.@S1063-651X~97!10506-2#

PACS number~s!: 05.90.1m, 03.40.Dz, 81.40.Lm
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How do solids differ from liquids? Distinguishing chara
teristics of solids include the ability to support shear forc
the appearance of long-range spatial and temporal order,
creep, the slow dissipative deformation of a solid unde
small load @1–3#. Creep occurs in solids in addition to
much more rapid elastic response to a load. If the load
subsequently removed only the elastic portion of the str
relaxes. Creep thus represents an irreversible contributio
the equations of motion of a solid, not described by elastic
theory.

Andrade@4# attributed creep to ‘‘rearrangement or rot
tion of small parts of a crystalline nature,’’ i.e., dislocatio
motion, and differentiated creep mechanisms by their ch
acteristic strain rate. In Fig. 1 is shown the length of a
under constant load as a function of time@5#. Following an
immediate elastic strain, the bar grows at a decreasing
during primary creep. At sufficiently low temperatures su
creep behavior, also termed ‘‘logarithmic’’ creep, exten
indefinitely in time; the later stages of creep are suppres
Primary creep is typically attributed to thermally activat
dislocation motion@6,7#. Dislocations move as thermal fluc
tuations excite them over their activation barriers. Those
locations with the smallest activation energy leave the s
tem first, and the remaining dislocations are ever m
energetically unfavorable to budge. The exhaustion of
active dislocation density leads to a decreasing strain ra

During secondary, or steady-state, creep, disloca
mills, such as Frank-Read sources, are formed and pro
new dislocations. Through variously described scenarios,
production, annihilation, and interference of dislocatio
yield a constant strain rate. These models include Naba
Herring creep@8,9# where vacancies diffuse through crysta
in response to concentration gradients, and Orowan’s
ance of the rate of work hardening with the rate of diffusio
controlled recovery@10#. This is also the regime of ‘‘power
law’’ creep, where the strain rate is proportional to som
power n ~.1! of the applied stress. Such a power law
achieved in Weertman’s creep model@11#, where dislocation
mills operate on many parallel slip planes, and the resul
dislocations interact and annihilate through dislocat
climb.

As the dislocation density increases, the bar can eve
ally fail under the constant load, which marks the culmin
551063-651X/97/55~6!/6719~7!/$10.00
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tion of tertiary creep. During this final creep stage disloc
tions accumulate, cracks form and fracture brittle materi
voids coalesce, and necking ensues in ductile ones. The t
stages of creep are often summarized in a law of the form@5#

de5Aln t1Btn1eCt, ~1!

where de is the creep strain of the solid. The freedom
choose the three coefficients and the exponent empiric
implies rather a good fit to any experimental circumstanc

The empirical data on creep are most usefully summ
rized in deformation-mechanism maps@12#, where creep
mechanisms and their corresponding strain rates are plo
as functions of temperature and applied stress~Fig. 2!. Such
maps prove useful in the engineering design of, e.g., rea
components and aircraft engines, where creep must be
duced to strict tolerances. Parameters such as chemical
position and crystalline size can be adjusted to alter the
pography of the maps and identify the materials wh
satisfy the tolerance limits. Thermodynamic formalism

FIG. 1. The creep strain of a rod under constant load as a fu
tion of time. The behavior is typically divided into primary cree
characterized by a decreasing strain rate, secondary creep w
constant strain rate, and tertiary creep, with an increasing st
rate, culminating in failure.
6719 © 1997 The American Physical Society
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6720 55RITVA LÖFSTEDT
such as those of Rice and Asaro and Rice@13#, yield consti-
tutive equations which successfully describe the macrosc
deformations which result from specific microstructural re
rangements, such as metallic slip and shear strain loca
tion. Such formalisms remain empirically based, however
the sense that the microscopic deformation mechan
which dominates the macroscopic motion must be known
order that the correct constitutive law be used.

Despite the success of such empirical approaches, a t
retical model for creep, at the level of the equations of el
ticity, remains elusive. Thermal activation models mu
grapple with the contradiction of creep at liquid helium te
peratures, where the creep curves of cadmium at 4.2 and
K differ by only 10% in their strain rates@14#. Extrapolation
of the creep data from the experimental torsion, tension,
bending tests to the design of real machine componen
involved; already the generalization to multiaxial stress re
on simplifying assumptions about the geometry of the yi
surface@15#. Quantitative reproducibility of creep measur
ments is hampered by the sensitivity of creep rates to sm
irregularities in the experimental apparatus. For exam
generalizations about the behavior of particular solids un
simple tension must correct for variations in crystalline a
alignment, the presence of thermal gradients, and the pre
boundary conditions imposed by the load@3#.

The most pressing question posed by creep concerns
status of elasticity theory. Given that creep phenomena
long-time, long-wavelength effects, is there no macrosco
theory, at the level of hydrodynamics, which presents a u
fied picture of the behavior of solids? If not, it is intrinsical
puzzling that decidedly macroscopic motion, such as
bending of a marble mantelpiece under its own weight@16#,
resists description within a thermodynamic framework. Sin
hydrodynamics cannot be derived from microscopic fi
principles, such a conclusion would imply that the mac
scopic motion of solids lacks any theoretical understandi

Eckart@17,18# developed a formal procedure by means

FIG. 2. A typical deformation-mechanism map, where str
rates and the deformation mechanisms are plotted as function
temperature~normalized to the melting point! and applied stress
~normalized to the shear modulus!. By changing the chemical com
position of a material the topography of the map can be altered
plastic deformation reduced to within tolerance limits.
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which he could deduce the leading-order dissipative te
appropriate to a hydrodynamic theory. Applying this proc
dure, which entails restricting the dissipative terms to sati
energy conservation and entropy production, to an Eule
fluid, yields the familiar Navier-Stokes equations charact
ized by shear and bulk viscosities and thermal conductiv
Eckart applied the same formalism to the equations of e
ticity, and found in addition to viscosity and thermal condu
tivity a leading-order dissipative term unique to solids, whi
describes plastic deformation.

The classical equations of elasticity may be written
conservation of mass,

]r

]t
1¹W •rnW 50, ~2!

conservation of momentum,

]rn i
]t

1
]

]r j
~Pd i j1t i j1rn in j !50, ~3!

conservation of entropy,

]rs

]t
1¹W •rsnW 50, ~4!

and what may be termed conservation of the lattice,

]RW

]t
1~nW •¹W !RW 50, ~5!

Here r(rW,t) is the density,nW (rW,t) is the velocity,P(rW,t) is
the hydrostatic pressure,t i j (rW,t) is the shear stress tenso
s(rW,t) is the entropy per gram, andRW (rW,t) is the position at
time 0 of a particle which at timet is at rW. The first and
second laws of thermodynamics are expressed in the for

de5Tds1PdS 1r D1S ]e

]mi j
Ddmi j , ~6!

wheree is the internal energy of the solid per gram,T is the
temperature, andmi j is the strain tensor at constant densi
At linear order in the strains,

mi j5
1

2S ]Ri

]r j
1

]Rj

]r i
2
2

3
d i j ~¹W •RW ! D . ~7!

Using Eq.~6!, and Eqs.~2!–~5!, conservation of energy de
termines the first-order expressions for

P5k¹W •~RW 2rW ! ~8!

and

t i j5mS ]Ri

]r j
1

]Rj

]r i
2
2

3
d i j ~¹W •RW ! D , ~9!

wherek is the bulk modulus, andm is the shear modulus
The presence of the shear stress tensor and the need fo
~5! to close the set of equations is what distinguishes th
equations from the Euler equations of fluid mechanics.
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55 6721THERMODYNAMIC APPROACH TO CREEP AND PLASTICITY
To introduce dissipation into these equations Eckart@17#
imposed the condition of entropy production while mainta
ing the conservation of energy@19,20#. The dissipative fluxes
include the effects of thermal conductivity and bulk a
shear viscosity, which shall henceforth be neglected. A
modification of Eqs.~2!–~5! must also be consistent with th
conservation laws, Galilean covariance, and symmetry p
ciples. To leading order, Eckart replaced Eqs.~4! and~5! by

]rs

]t
1¹W •rsnW 5

~t i j !
2

tE
~10!

and

]

]r j
S ]Ri

]t
1~nW •¹W !Ri D52

t i j
tE

, ~11!

wheretE is a characteristic time for the elastic shear stres
relax. Eckart expressed Eq.~11! in terms of the metricgi j
5(]Rl /]r i)(]Rl /]r j ) of the initial ~relaxed! state. He inter-
preted the irreversible contribution to the metric as replac
the elastic constraint of ‘‘relaxability-in-the-large,’’ wher
all strains are relaxed by removing external loads, by
plastic ‘‘relaxability-in-the-small,’’ where internal elasti
strains may be relaxed only by cutting the material. The
ter principle, Eckart showed, was sufficient to maintain
Riemannian geometry of strain.

The form of Eq.~11! closely resembles the constitutiv
equations describing viscoelasticity, which are frequently
plied to describe slip of metallic crystals. Note, however, t
Eckart’s term does not allow for a characteristic ‘‘yie
stress’’ to which the shear stress relaxes. Rather Eq.~11!
indicates that the equations of elasticity are mathematic
unstable, since the leading-order dissipation renders the s
unable to support a shear. In a real physical system, the c
acteristic time constants would differ on the various s
planes of an anisotropic crystal, and these time const
may be sufficiently long that relaxation effects can be
nored on the laboratory time scale.

The form of Eqs.~10! and ~11! is not unique. An addi-
tional dissipative term which satisfies the constraints of
ergy conservation and entropy production would transfo
Eqs.~4! and ~5! to yield

]rs

]t
1¹W •rsnW 5dS ]~t i j r ik!

]r j
D 2, ~12!

]Ri

]t
1~nW •¹W !Ri5d

]~tk jr ik!

]r j
, ~13!

where r i j5(]r i /]Rj )RkÞ j
, and Eckart’s terms have bee

suppressed. Equations~12! and ~13! describe a ‘‘diffusion’’
of the original lattice, which is equivalent to a plastic defo
mation. The elastic strains are measured relative to the
erence latticeRW . If one applies a load to a solid, according
Eq. ~13!, this reference lattice will on long-time scales d
fuse in such a way as to reduce strain gradients. Upon
moval of the load, the solid will relax the elastic part of th
strains, to the new position of the reference lattice.

In what follows, I shall investigate the material behavi
implied by Eqs.~12! and~13!. The viscoelastic contribution
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whose behavioral consequences have been explored in d
elsewhere@15# will be neglected. Equations~12! and ~13!
describe the lowest-order dissipative correction to a rob
elastic solid state, namely, one which supports a unifo
shear stress@21#. The response in Eq.~13! bears similarity to
the phenomenological predictions of strain-gradient plas
ity @22#. There, gradient effects are considered as an a
tional contribution to the equations of plastic flow. Her
qualitatively different material behavior is predicted in th
regime where viscoelastic creep is suppressed, and inel
response to shear stress gradients is the dominant mecha
of plastic flow.

Requiring that the entropy production be positive mea
that in Eq.~12! the diffusion coefficientd>0; since a perfect
lattice does not creep, we specify,d}rv , the local density of
dislocations in the solid. The presence of a higher deriva
in Eq. ~13! requires the application of another boundary co
dition. We can solve for the velocity in Eq.~13! to give

n i5H d ]~t l j r lk!

]r j
2

]Rk

]t J ~J21! ik , ~14!

where

J5JS ]RxRyRz

]r xr yr z
D , ~15!

the Jacobian matrix. To lowest order in the strains we c
rewrite Eq.~14! as

n i52
]Ri

]t
1d

]t i j
]r j

. ~16!

In order that the surface of the solid be well defined, we ta
as the new boundary condition

ns'52S ]R'

]t D
surface

5 l̇ , ~17!

where ns' is the perpendicular component of the surfa
velocity andl is the dimension of the solid which is creep
ing. By continuity, Eq.~2!,

ns'5n'~surface!, ~18!

the perpendicular component of the bulk velocity evalua
at the surface. Combining Eqs.~17! and ~18! yields

dS ]t' j

]r j
D
surface

50. ~19!

The creep term is required to vanish at the surface. One
to satisfy such a boundary condition is to taked→0 at the
surface, which implies that the dislocations are annihilated
they hit the surface.

The formal solution to elasticity with creep is obtained
putting Eq.~14! into Eqs.~2!–~4! to obtain a closed theory
for RW , r, ands. Consider, for example, a standing bar act
on by gravity~Fig. 3!. The equations of linear elasticity ar
solved subject to the force of gravity



m

y
ti

e

an
ei
u

ion
ire
ion
b

c-

ch

uc-
the
hat

e
c-
of
at

ing
ity.
ne
a-

m

ffi-
e

he

6722 55RITVA LÖFSTEDT
]~Pdzi1tzi!

]r i
5rgẑ ~20!

and the boundary condition of vanishing shear and nor
forces on the other faces yields@23#

dRx52
srg

E
~ l2z!x, dRy52

srg

E
~ l2z!y,

~21!

dRz5
rg

2E
$ l 22~ l2z!22s~x21y2!%,

where dRi5Ri2r i , s is Poisson’s ratio,E is Young’s
modulus, andl is the length of the bar. Neglecting an
changes in the radial dimension of the bar, the creep equa

nz52
]Rz

]t
1d

]tzz
]z

, ~22!

with Eqs.~17! and ~18! and evaluated atz5 l yields

l̇52
rg

E
l l̇2d

4

3

mrg

E
~11s!. ~23!

The lowest-order solution

~ l 02 l !S 11
rgl0
2E D'

4

3

dmrg

E
~11s!t ~24!

gives that the length of the bar decreases linearly in tim
This constant creep rate, a characteristic of secondary cr
is perhaps not surprising since we have assumed thatd, and
therefore the density of dislocations in the bar, is const
Since at the boundaries the dislocations are steadily b
annihilated, this constancy implies an equal rate of prod
tion of dislocations in the bulk of the bar.

The complementary scenario, viz., where the dislocat
or more generally, defect density is not replenished, requ
additional information about the dynamics of the dislocat
loops. Including the dependence on the additional varia

FIG. 3. A bar standing on a surface. It will creep due to t
strain gradient imposed by gravity.
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vW , a local~average! Burgers vector, the equations of elasti
ity are revised as follows@24#. Momentum conservation~3!
acquires an additional stress contribution

]rn i
]t

1
]

]r j
~Pd i j1t i j1rn in j1lv iv j !50, ~25!

wherel is a mutual interaction energy of dislocations whi
enters the first law~6! as

S ]re

]v i
D
s,p,mi j

5lv i . ~26!

The lattice equation becomes

]Ri

]t
1~nW •¹W !Ri5d

]t i j
]r j

2g$vW 3~¹W 3lvW !% i , ~27!

and the equation of motion for the Burgers vector is

]vW

]t
5¹W 3$~nW 1dnW !3vW %, ~28!

where

dn i5a$vW 3~¹W 3lvW !% i1g
]t i j
]r j

. ~29!

The dissipative terms in Eqs.~28! and ~29! are again speci-
fied by requiring energy conservation and entropy prod
tion. Onsager reciprocity establishes the equivalence of
g’s and entropy production being positive also requires t
g2,ad. Sinced}rv in the limit of dilute dislocation den-
sity, we takeg}rv to satisfy the inequality. In the sam
dilute limit we shall neglect terms involving mutual intera
tions of the Burgers vectors, and take the limiting form
Eq. ~29! where the dislocation density is convected along
the creep velocity:

]vW

]t
5¹W 3~dnW 3vW !, dn i5g

]t i j
]r j

. ~30!

Consider now the standing bar acted on by gravity, tak
into account the time dependence of the dislocation dens
In the dilute limit, the dislocations do not interact, and if o
assumes a slowly spatially varying distribution of disloc
tions in the bulk,rv}uvW u, andvW can be replaced byuvW u in
Eq. ~30!. Assuming that the depletion of dislocations fro
the bulk equals the net flux ofvW through the surface,

E dVS ]uvW u
]t D52g

4

3
mrguvW u~11s!A, ~31!

whereA is the cross-sectional area of the bar, andV is its
volume. Using this time dependence of the diffusion coe
cientd in Eq. ~23!, and solving for the length of the bar, th
‘‘exhaustion creep’’ behavior is described by
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l 02 l' l 0uvW 0uS dg D lnS 11
4

3

mpg

E
~11s!

g

uvW u
l 0t D ,

~32!

wherevW 0 is the initial value of the local Burgers vector. Th
result is in agreement with the logarithmic creep of the e
pirical relations. To describe the crossover regime from p
mary to secondary creep the full dependence of creep on
mutual interaction of dislocations, including the possibil
of dislocation production such as a Frank-Read sou
would have to be taken into account.

The richness of creep behavior is illustrated by the co
plexity of the two-dimensional deformation-mechanis
maps@12# ~Fig. 2!. While various microscopic models ma
describe individual mechanisms at least qualitatively, tran
tions between mechanisms are typically only empirically o
served. For example, the behavior of a sapphire fiber und
tensile load is a very strong function of its temperature@25#.
At lower temperatures, hardly any creep strain is discern
before fracture. Experiments and theories have identi
spherical voids which form during the fabrication of sapph
fibers as the likely culprits in the fracture. At lower temper
tures these voids are unstable to surface diffusion, where
surface atoms migrate from regions of high curvature
wards those of lower curvature, and deform into ellipsoi
with their major axis perpendicular to the tension. Howev
along with the increasing sharpness of the ellipse pro
comes increased stress concentration at the tips. This e
soidal shape is susceptible to fracture in accordance with
Griffith criterion @26#.

At higher temperatures, sapphire fibers can maintain cr
strains of up to 10%. In this region of parameter space,
face diffusion is no longer a dominant deformation mec
nism. Instead empirical creep equations predict that
spherical voids distort into ellipsoids elongated in the dir
tion parallel to the tension. These are shapes of diminish
stress intensities, and they are stable against crack forma
Despite its dramatic consequences, the behavioral trans
in sapphire as a function of temperature is unexplained.

Clearly a macroscopic theory cannot reveal an underly
microscopic mechanism for creep. However, the mac
scopic behavior which follows must be describable by
thermodynamic formalism; in this case, the two behavi
are obtained by solving the dissipative elastic equations s
ject to two different boundary conditions. As of yet we ha
satisfied the boundary condition on the creep term~19! by
taking d→0 at the surface. However, if the dislocations
not annihilate as they hit the surface, the diffusion const
does not vanish. In addition, the presence of dislocati
implies a stress discontinuity at the boundary. Condition~19!
can still be satisfied, however, by taking

S ]t' j

]r j
D
surface

50 ~33!

as the boundary condition subject to which the elastic eq
tions should be solved.

Consider a circular hole in a two-dimensional plate, w
a tensile forceS acting on it at infinity. The general solutio
to the elastic equations in this~dipolar! geometry is given by
@27#
-
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P1t rr5A1
B

r 2
2cos2uS 2A81

6C8

r 4
1
4D8

r 2 D ,
P1tuu5A2

B

r 2
1cos2uS 2A8112B8r 21

6C8

r 4 D , ~34!

t ru5sin2uS 2A816B8r 22
6C8

r 4
2
2D8

r 2 D ,
where the coefficients are specified by the boundary co
tions. Using these solutions in Eq.~16! gives for the lowest-
order, angle-dependent creep rates

n r52
md

E
cos2uH 16B8r ~22s21!1

16D8~2122s!

3r 3 J ,
~35!

nu52
md

E
sin2uH 16B8r ~2s11!1

16D8~112s!

3r 3 J .
If the dislocations in the bulk are annihilated as they

the surface, then we use the solution to linear elasticity,
~34!, satisfying the boundary conditions

~P1t rr !r5050 ~36!

and

t ru~r5a!50, ~37!

wherea is the radius of the circular hole. This solution

A5
S

2
, B52

Sa2

2
, A852

S

4
, B850,

~38!

C852
Sa4

4
, D85

Sa2

2

is then used in Eq.~35! to solve for the creep behavior. Thi
is illustrated in Fig. 4~b!, and the creep is seen to elonga
the circle in the stable direction.

If the dislocations build up at the surface, we can calc
late the effect of the creep term when the dislocation den
at the surface has reached a steady-state value. In this
the equations of linear elasticity should be solved subjec
the boundary conditions

S ]t r j
]r j

D
r5a

50 ~39!

and

t ru~r5a!50, ~40!

whose solution is

A5
S

2
, B52

Sa2

2
, A852

S

4
, B850,

~41!

C852
Sa4

12
, D850.
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Again, the resultant creep of the circular shape can be fou
by using Eq.~41! in the creep equations~35! and is found to
vanish identically. The circular shape in this instance resi
elongation in the direction of the external tension and t
accompanying diminution of the geometrical stress conce
tration. Thus, with this boundary condition, the elastic sol
tion is instead susceptible to other deformation mechanism
such as surface diffusion, which work to distort the ‘‘hard
ened’’ surface into the unstable cracklike shape. The mac
scopic theory thus indicates that the transition in deformati
mechanism as a function of temperature is related to
ability of dislocations to pass through the surface; at hig

FIG. 4. The distortion of spherical voids in sapphire fibers und
tension.~a! The solution to the creep equation~33! if dislocations
pile up at the surface. Both radial and angular creep are suppres
and the material is susceptible to other means of fracture. S
behavior is observed at lower temperatures.~b! The solution to Eq.
~33! if dislocations annihilate at the surface. The sphere elongate
the direction of the tension, and the stresses are diminished. S
~stable! strain is observed at higher temperatures.
in

-

ds
d

ts
e
n-
-
s,

o-
n
e
h

temperatures the dislocations can get through, while at
temperatures they build up at the surface. Thus the natur
the macroscopic theory may give insight into the workin
on a microscopic scale.

The theory considered herein is clearly in a rudiment
form. To connect to current empirical creep equations
full dependence of the elastic constants on the crystal
geometry should be taken into account@28#. Rather than as-
suming the ‘‘amorphous’’ elasticity expressed by one bu
and one shear modulus, one could systematically incorpo
the preferred slip planes and reproduce the sensitivity
creep to alignment. Given the high-temperature appara
used in most creep tests, the full set of thermodynamic
sipative fluxes, notably thermal conductivity and viscoelas
relaxation, Eq.~13!, ought to be included in the analysis of
laboratory experiment. Finally, rather than taking stea
state solutions to the weakly dissipative equations, the
namics of dislocations as given by Eqs.~25!–~29! contains
both transient behavior and nonlinear interactions. The
equations might allow for a thermodynamic description
plasticity @29# and lend some insight into the accompanyi
effects of hysteresis and acoustic emission@30#.

The analysis in this paper is motivated by the presen
frustrating state of fracture theory. The classic crack desc
tion due to Inglis solves the elastic equations around an
liptical hole in a stressed plate@31#. The limit of an infini-
tesimally wide ellipse, which is the basis of curre
descriptions of fracture, is riddled with singularities and r
sultant dynamic instabilities@32#. Inclusion of an inelastic
dissipation might allow for a self-consistent calculation o
dynamic crack profile. The competing time scales govern
elastic crack propagation and the dissipative forces wo
determine whether the dynamic solution results in fracture
plastic deformation. Perhaps through such an analysis
could even define the engineering concepts of ‘‘brittlenes
and ‘‘ductility’’ more rigorously, as thermodynamic equa
tions of state.
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